Mark Russinovich on Windows Vista SP1 File Copy Improvements

Windows Vista SP1 includes a number of enhancements over the original Vista release in the areas of application compatibility, device support, power management, security and reliability. You can see a detailed list of the changes in the Notable Changes in Windows Vista Service Pack 1 whitepaper that you can download here. One of the improvements […]

Windows Vista SP1 includes a number of enhancements over the original Vista release in the areas of application compatibility, device support, power management, security and reliability. You can see a detailed list of the changes in the Notable Changes in Windows Vista Service Pack 1 whitepaper that you can download here. One of the improvements highlighted in the document is the increased performance of file copying for multiple scenarios, including local copies on the same disk, copying files from remote non-Windows Vista systems, and copying files between SP1 systems. How were these gains achieved? The answer is a complex one and lies in the changes to the file copy engine between Windows XP and Vista and further changes in SP1. Everyone copies files, so I thought it would be worth taking a break from the “Case of…” posts and dive deep into the evolution of the copy engine to show how SP1 improves its performance.

Copying a file seems like a relatively straightforward operation: open the source file, create the destination, and then read from the source and write to the destination. In reality, however, the performance of copying files is measured along the dimensions of accurate progress indication, CPU usage, memory usage, and throughput. In general, optimizing one area causes degradation in others. Further, there is semantic information not available to copy engines that could help them make better tradeoffs. For example, if they knew that you weren’t planning on accessing the target of the copy operation they could avoid caching the file’s data in memory, but if it knew that the file was going to be immediately consumed by another application, or in the case of a file server, client systems sharing the files, it would aggressively cache the data on the destination system.

I encourage you to read the full article, but here is a cheat sheet of changes:

  • Using cached file I/O again for all file copies, both local and remote, with one exception.
  • The one case where the SP1 file copy engine doesn't use caching is for remote file copies, where it prevents the double-caching problem by leveraging support in the Windows client-side remote file system driver, Rdbss.sys.
  • Another enhancement for remote copies is the pipelined I/Os issued by the SMB2 file system driver, srv2.sys
  • The copy engine also issues four initial I/Os of sizes ranging from 128KB to 1MB, depending on the size of the file being copied, which triggers the Cache Manager read-ahead thread to issue large I/Os.
  • Explorer makes copy duration estimates much sooner than the original Vista release and the estimation algorithm is more accurate.

There are also a couple of areas where you can see some performance degradation.

The first is when copying to or from a Server 2003 system over a slow network. The original Vista copy engine would deliver a high-speed copy, but, because of the out-of-order I/O problem I mentioned earlier, trigger pathologic behavior in the Server 2003 Cache Manager that could cause all of the server’s memory to be filled with copied file data. The SP1 copy engine changes avoid that, but because the engine issues 32KB I/Os instead of 60KB I/Os, the throughput it achieves on high-latency connections can approach half of what the original Vista release achieved.

The other case where SP1 might not perform as well as original Vista is for large file copies on the same volume. Since SP1 issues smaller I/Os, primarily to allow the rest of the system to have better access to the disk and hence better responsiveness during a copy, the number of disk head seeks between reads from the source and writes to the destination files can be higher, especially on disks that don’t avoid seeks with efficient internal queuing algorithms.

Full Article

Microsoft, Windows Vista, Service Pack, SP1, Vista SP1, File, Copy, Improvement, Performance, Features